Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 101 - 125 of 198 results
101.

Optogenetic Control of RhoA to Probe Subcellular Mechanochemical Circuitry.

blue TULIP HEK293T
Curr Protoc Cell Biol, Mar 2020 DOI: 10.1002/cpcb.102 Link to full text
Abstract: Spatiotemporal localization of protein function is essential for physiological processes from subcellular to tissue scales. Genetic and pharmacological approaches have played instrumental roles in isolating molecular components necessary for subcellular machinery. However, these approaches have limited capabilities to reveal the nature of the spatiotemporal regulation of subcellular machineries like those of cytoskeletal organelles. With the recent advancement of optogenetic probes, the field now has a powerful tool to localize cytoskeletal stimuli in both space and time. Here, we detail the use of tunable light-controlled interacting protein tags (TULIPs) to manipulate RhoA signaling in vivo. This is an optogenetic dimerization system that rapidly, reversibly, and efficiently directs a cytoplasmic RhoGEF to the plasma membrane for activation of RhoA using light. We first compare this probe to other available optogenetic systems and outline the engineering logic for the chosen recruitable RhoGEFs. We also describe how to generate the cell line, spatially control illumination, confirm optogenetic control of RhoA, and mechanically induce cell-cell junction deformation in cultured tissues. Together, these protocols detail how to probe the mechanochemical circuitry downstream of RhoA signaling. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Generation of a stable cell line expressing TULIP constructs Basic Protocol 2: Preparation of collagen substrate for imaging Basic Protocol 3: Transient transfection for visualization of downstream effectors Basic Protocol 4: Calibration of spatial illumination Basic Protocol 5: Optogenetic activation of a region of interest.
102.

Rapid Dynamics of Signal-Dependent Transcriptional Repression by Capicua.

blue iLID D. melanogaster in vivo Endogenous gene expression Developmental processes
Dev Cell, 26 Feb 2020 DOI: 10.1016/j.devcel.2020.02.004 Link to full text
Abstract: Optogenetic perturbations, live imaging, and time-resolved ChIP-seq assays in Drosophila embryos were used to dissect the ERK-dependent control of the HMG-box repressor Capicua (Cic), which plays critical roles in development and is deregulated in human spinocerebellar ataxia and cancers. We established that Cic target genes are activated before significant downregulation of nuclear localization of Cic and demonstrated that their activation is preceded by fast dissociation of Cic from the regulatory DNA. We discovered that both Cic-DNA binding and repression are rapidly reinstated in the absence of ERK activation, revealing that inductive signaling must be sufficiently sustained to ensure robust transcriptional response. Our work provides a quantitative framework for the mechanistic analysis of dynamics and control of transcriptional repression in development.
103.

Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage.

blue CRY2/CIB1 MCF7 Signaling cascade control Cell cycle control
Cell Rep, 18 Feb 2020 DOI: 10.1016/j.celrep.2020.01.074 Link to full text
Abstract: Cell-autonomous changes in p53 expression govern the duration and outcome of cell-cycle arrest at the G2 checkpoint for DNA damage. Here, we report that mitogen-activated protein kinase (MAPK) signaling integrates extracellular cues with p53 dynamics to determine cell fate at the G2 checkpoint. Optogenetic tools and quantitative cell biochemistry reveal transient oscillations in MAPK activity dependent on ataxia-telangiectasia-mutated kinase after DNA damage. MAPK inhibition alters p53 dynamics and p53-dependent gene expression after checkpoint enforcement, prolonging G2 arrest. In contrast, sustained MAPK signaling induces the phosphorylation of CDC25C, and consequently, the accumulation of pro-mitotic kinases, thereby relaxing checkpoint stringency and permitting cells to evade prolonged G2 arrest and senescence induction. We propose a model in which this MAPK-mediated mechanism integrates extracellular cues with cell-autonomous p53-mediated signals, to safeguard genomic integrity during tissue proliferation. Early steps in oncogene-driven carcinogenesis may imbalance this tumor-suppressive mechanism to trigger genome instability.
104.

Optogenetic control of mRNA localization and translation in live cells.

blue CRY2/CIB1 HeLa NIH/3T3 rat hippocampal neurons Control of cytoskeleton / cell motility / cell shape Endogenous gene expression
Nat Cell Biol, 17 Feb 2020 DOI: 10.1038/s41556-020-0468-1 Link to full text
Abstract: Despite efforts to visualize the spatio-temporal dynamics of single messenger RNAs, the ability to precisely control their function has lagged. This study presents an optogenetic approach for manipulating the localization and translation of specific mRNAs by trapping them in clusters. This clustering greatly amplified reporter signals, enabling endogenous RNA-protein interactions to be clearly visualized in single cells. Functionally, this sequestration reduced the ability of mRNAs to access ribosomes, markedly attenuating protein synthesis. A spatio-temporally resolved analysis indicated that sequestration of endogenous β-actin mRNA attenuated cell motility through the regulation of focal-adhesion dynamics. These results suggest a mechanism highlighting the indispensable role of newly synthesized β-actin protein for efficient cell migration. This platform may be broadly applicable for use in investigating the spatio-temporal activities of specific mRNAs in various biological processes.
105.

Recent advances in the use of genetically encodable optical tools to elicit and monitor signaling events.

blue cyan red UV violet BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Cell Biol, 10 Feb 2020 DOI: 10.1016/j.ceb.2020.01.007 Link to full text
Abstract: Cells rely on a complex network of spatiotemporally regulated signaling activities to effectively transduce information from extracellular cues to intracellular machinery. To probe this activity architecture, researchers have developed an extensive molecular tool kit of fluorescent biosensors and optogenetic actuators capable of monitoring and manipulating various signaling activities with high spatiotemporal precision. The goal of this review is to provide readers with an overview of basic concepts and recent advances in the development and application of genetically encodable biosensors and optogenetic tools for understanding signaling activity.
106.

A Nudge or a Shove: Altering Actomyosin Pulse Profiles In Vivo.

blue LOV domains Review
Dev Cell, 27 Jan 2020 DOI: 10.1016/j.devcel.2020.01.001 Link to full text
Abstract: Pulsed actomyosin contractions drive morphogenetic processes, but how cyclic frequencies and amplitudes of contractions are tuned to achieve processive shrinking of cell surfaces remains unclear. In this issue of Developmental Cell, Cavanaugh et al. (2020) use optogenetics and biophysical modeling to demonstrate how cells respond to different oscillatory force profiles.
107.

RhoA Mediates Epithelial Cell Shape Changes via Mechanosensitive Endocytosis.

blue TULIP Caco-2 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Dev Cell, 26 Dec 2019 DOI: 10.1016/j.devcel.2019.12.002 Link to full text
Abstract: Epithelial remodeling involves ratcheting behavior whereby periodic contractility produces transient changes in cell-cell contact lengths, which stabilize to produce lasting morphogenetic changes. Pulsatile RhoA activity is thought to underlie morphogenetic ratchets, but how RhoA governs transient changes in junction length, and how these changes are rectified to produce irreversible deformation, remains poorly understood. Here, we use optogenetics to characterize responses to pulsatile RhoA in model epithelium. Short RhoA pulses drive reversible junction contractions, while longer pulses produce irreversible junction length changes that saturate with prolonged pulse durations. Using an enhanced vertex model, we show this is explained by two effects: thresholded tension remodeling and continuous strain relaxation. Our model predicts that structuring RhoA into multiple pulses overcomes the saturation of contractility and confirms this experimentally. Junction remodeling also requires formin-mediated E-cadherin clustering and dynamin-dependent endocytosis. Thus, irreversible junction deformations are regulated by RhoA-mediated contractility, membrane trafficking, and adhesion receptor remodeling.
108.

Mapping the proximity interaction network of the Rho-family GTPases reveals signalling pathways and regulatory mechanisms.

blue AsLOV2 HeLa Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Nat Cell Biol, 23 Dec 2019 DOI: 10.1038/s41556-019-0438-7 Link to full text
Abstract: Guanine nucleotide exchange factors (RhoGEFs) and GTPase-activating proteins (RhoGAPs) coordinate the activation state of the Rho family of GTPases for binding to effectors. Here, we exploited proximity-dependent biotinylation to systematically define the Rho family proximity interaction network from 28 baits to produce 9,939 high-confidence proximity interactions in two cell lines. Exploiting the nucleotide states of Rho GTPases, we revealed the landscape of interactions with RhoGEFs and RhoGAPs. We systematically defined effectors of Rho proteins to reveal candidates for classical and atypical Rho proteins. We used optogenetics to demonstrate that KIAA0355 (termed GARRE here) is a RAC1 interactor. A functional screen of RHOG candidate effectors identified PLEKHG3 as a promoter of Rac-mediated membrane ruffling downstream of RHOG. We identified that active RHOA binds the kinase SLK in Drosophila and mammalian cells to promote Ezrin-Radixin-Moesin phosphorylation. Our proximity interactions data pave the way for dissecting additional Rho signalling pathways, and the approaches described here are applicable to the Ras family.
109.

Primary Cilia Signaling Promotes Axonal Tract Development and Is Disrupted in Joubert Syndrome-Related Disorders Models.

blue bPAC (BlaC) CRY2/CIB1 primary mouse deep cerebellar nuclei neurons Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Dev Cell, 16 Dec 2019 DOI: 10.1016/j.devcel.2019.11.005 Link to full text
Abstract: Appropriate axonal growth and connectivity are essential for functional wiring of the brain. Joubert syndrome-related disorders (JSRD), a group of ciliopathies in which mutations disrupt primary cilia function, are characterized by axonal tract malformations. However, little is known about how cilia-driven signaling regulates axonal growth and connectivity. We demonstrate that the deletion of related JSRD genes, Arl13b and Inpp5e, in projection neurons leads to de-fasciculated and misoriented axonal tracts. Arl13b deletion disrupts the function of its downstream effector, Inpp5e, and deregulates ciliary-PI3K/AKT signaling. Chemogenetic activation of ciliary GPCR signaling and cilia-specific optogenetic modulation of downstream second messenger cascades (PI3K, AKT, and AC3) commonly regulated by ciliary signaling receptors induce rapid changes in axonal dynamics. Further, Arl13b deletion leads to changes in transcriptional landscape associated with dysregulated PI3K/AKT signaling. These data suggest that ciliary signaling acts to modulate axonal connectivity and that impaired primary cilia signaling underlies axonal tract defects in JSRD.
110.

Locally Activating TrkB Receptor Generates Actin Waves and Specifies Axonal Fate.

blue AsLOV2 CRY2/CRY2 rat hippocampal neurons Control of cytoskeleton / cell motility / cell shape
Cell Chem Biol, 24 Oct 2019 DOI: 10.1016/j.chembiol.2019.10.006 Link to full text
Abstract: Actin waves are filamentous actin (F-actin)-rich structures that initiate in the somato-neuritic area and move toward neurite ends. The upstream cues that initiate actin waves are poorly understood. Here, using an optogenetic approach (Opto-cytTrkB), we found that local activation of the TrkB receptor around the neurite end initiates actin waves and triggers neurite elongation. During actin wave generation, locally activated TrkB signaling in the distal neurite was functionally connected with preferentially localized Rac1 and its signaling pathways in the proximal region. Moreover, TrkB activity changed the location of ankyrinG--the master organizer of the axonal initial segment-and initiated the stimulated neurite to acquire axonal characteristics. Taken together, these findings suggest that local Opto-cytTrkB activation switches the fate from minor to major axonal neurite during neuronal polarization by generating actin waves.
111.

Chemokine Receptor CCR7 Triggers an Endomembrane Signaling Complex for Spatial Rac Activation.

blue AsLOV2 HEK293 Control of cytoskeleton / cell motility / cell shape
Cell Rep, 22 Oct 2019 DOI: 10.1016/j.celrep.2019.09.031 Link to full text
Abstract: Chemokine-guided cell migration is pivotal for many immunological and developmental processes. How chemokine receptor signaling persists to guarantee sustained directional migration despite receptor desensitization and internalization remains poorly understood. Here, we uncover a function for an intracellular pool of the chemokine receptor CCR7 present in human dendritic cells and cellular model systems. We find that CCR7 signaling, initiated at the plasma membrane, is translocated by joint trafficking of β-arrestin and Src kinase to endomembrane-residing CCR7. There, Src tyrosine phosphorylates CCR7, required for the recruitment of Vav1 to form an endomembrane-residing multi-protein signaling complex comprising CCR7, the RhoGEF Vav1, and its effector, Rac1. Interfering with vesicular trafficking affects CCR7-driven cell migration, whereas CCR7:Vav1 interaction at endomembranes is essential for local Rac1 recruitment to CCR7. Photoactivation of Rac1 at endomembranes leads to lamellipodia formation at the cell's leading edge, supporting the role of sustained endomembrane signaling in guiding cell migration.
112.

Secretory Vesicle Clustering in Fungal Filamentous Cells Does Not Require Directional Growth.

blue CRY2/CIB1 C. albicans Control of cytoskeleton / cell motility / cell shape
Cell Rep, 20 Aug 2019 DOI: 10.1016/j.celrep.2019.07.062 Link to full text
Abstract: During symmetry breaking, the highly conserved Rho GTPase Cdc42 becomes stabilized at a defined site via an amplification process. However, little is known about how a new polarity site is established in an already asymmetric cell-a critical process in a changing environment. The human fungal pathogen Candida albicans switches from budding to filamentous growth in response to external cues, a transition controlled by Cdc42. Here, we have used optogenetic manipulation of cell polarity to reset growth in asymmetric filamentous C. albicans cells. We show that increasing the level of active Cdc42 on the plasma membrane results in disruption of the exocyst subunit Sec3 localization and a striking de novo clustering of secretory vesicles. This new cluster of secretory vesicles is highly dynamic, moving by hops and jumps, until a new growth site is established. Our results reveal that secretory vesicle clustering can occur in the absence of directional growth.
113.

Degradation of integral membrane proteins modified with the photosensitive degron module requires the cytosolic endoplasmic reticulum-associated degradation pathway.

blue AtLOV2 S. cerevisiae Organelle manipulation
Mol Biol Cell, 14 Aug 2019 DOI: 10.1091/mbc.e18-12-0754 Link to full text
Abstract: Protein quality mechanisms are fundamental for proteostasis of eukaryotic cells. Endoplasmic reticulum-associated degradation (ERAD) is a well-studied pathway that ensures quality control of secretory and endoplasmic reticulum (ER)-resident proteins. Different branches of ERAD are involved in degradation of malfolded secretory proteins, depending on the localization of the misfolded part, the ER lumen (ERAD-L), the ER membrane (ERAD-M), and the cytosol (ERAD-C). Here we report that modification of several ER transmembrane proteins with the photosensitive degron (psd) module resulted in light-dependent degradation of the membrane proteins via the ERAD-C pathway. We found dependency on the ubiquitylation machinery including the ubiquitin-activating enzyme Uba1, the ubiquitin--conjugating enzymes Ubc6 and Ubc7, and the ubiquitin-protein ligase Doa10. Moreover, we found involvement of the Cdc48 AAA-ATPase complex members Ufd1 and Npl4, as well as the proteasome, in degradation of Sec62-myc-psd. Thus, our work shows that ERAD-C substrates can be systematically generated via synthetic degron constructs, which facilitates future investigations of the ERAD-C pathway.
114.

Coordination of protrusion dynamics within and between collectively migrating border cells by myosin II.

blue AsLOV2 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape
Mol Biol Cell, 7 Aug 2019 DOI: 10.1091/mbc.e19-02-0124 Link to full text
Abstract: Collective cell migration is emerging as a major driver of embryonic development, organogenesis, tissue homeostasis, and tumor dissemination. In contrast to individually migrating cells, collectively migrating cells maintain cell-cell adhesions and coordinate direction-sensing as they move. While non-muscle myosin II has been studied extensively in the context of cells migrating individually in vitro, its roles in cells migrating collectively in three-dimensional, native environments are not fully understood. Here we use genetics, Airyscan microscopy, live imaging, optogenetics, and Förster resonance energy transfer to probe the localization, dynamics, and functions of myosin II in migrating border cells of the Drosophila ovary. We find that myosin accumulates transiently at the base of protrusions, where it functions to retract them. E-cadherin and myosin co-localize at border cell-border cell contacts and cooperate to transmit directional information. A phosphomimetic form of myosin is sufficient to convert border cells to a round morphology and blebbing migration mode. Together these studies demonstrate that distinct and dynamic pools of myosin II regulate protrusion dynamics within and between collectively migrating cells and suggest a new model for the role of protrusions in collective direction sensing in vivo. Movie S1 Movie S1 Live imaging of border cell specification and delamination from anterior epithelium From Figure 1D-I. Slbo promoter driving Lifeact-GFP (green) marks border cells, Upd-Gal4, UAS-DsRed.nls (red) mark polar cell nuclei. Hoechst 33342 (blue) marks DNA. Time resolution is 4 min. Movie S2 Movie S2 Representative Z-projected and registered live imaging of Sqh-mCherry accumulating in cortical junctions (flashing arrows) during border cell migration. From Figure 3J-K. Time resolution is 25 sec. Movie S3 Movie S3 Representative Z-projected and registered live imaging of E-cad-GFP during border cell migration. From Figure 3M-N. Time resolution is 60 sec. Movie S4 Movie S4 Representative Z-projection of control flpout cells from hs-Flp;, Slbo>Lifeact-GFP; AyGal4, UAS-RFP. Clonal cells are marked by magenta nuclei (nls-RFP). Time resolution is 2.5 min. From Supp. Figure 3 A-D. Movie S5 Movie S5 Representative Z-projection of Sqh-RNAi flpout cells from hs-Flp;, Slbo>Lifeact-GFP; AyGal4, UAS-RFP, UAS-sqh-RNAi. Clonal cells are marked by magenta nuclei (nls-RFP). Time resolution is 2.5 min. From Supp. Figure 3 E-H. Movie S6 Movie S6 Representative Z-projected c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-white RNAi. Time resolution is 2 min. From Supp. Figure 4 A-D. Movie S7 Movie S7 Representative Z-projected c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-sqh-RNAi showing frequent side protrusions. Time resolution is 2 min. From Supp. Figure 4 E-H. White arrows indicate ectopic side and rear protrusions. Movie S8 Movie S8 Representative Z-projected c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-sqh-RNAi showing long lived side protrusions. Time resolution is 2 min. From Supp. Figure 4 I-L. Movie S9 Movie S9 Representative Z-projected live imaging of c306-Gal4 driving UAS-white-RNAi in clusters co-expressing Lifeact-GFP under the control of the slbo enhancer and Sqh-mCherry from its endogenous promoter during periods of protrusive and round migration phases. From Figure 6A-D. 25 min corresponds to 6A and B and 1hr:25 min corresponds to 6C and D. Time resolution is 2.5 min. Movie S10 Movie S10 Sqh-mCherry (magenta) channel from Supplementary Movie 9. From Figure 6A-D. 25 min corresponds to 6A and B and 1hr:25 min corresponds to 6C and D. Time resolution is 2.5 min. Movie S11 Movie S11 Representative Z-projected live imaging of c306-Gal4 driving UAS-Ecad-RNAi in clusters co-expressing Lifeact-GFP under the control of the slbo enhancer and Sqh-mCherry from its endogenous promoter during a protrusive phase of migration. From Figure 6E-F. Time resolution is 2.5 min. Movie S12 Movie S12 Sqh-mCherry (magenta) channel from Supplementary Movie 11. From Figure 6E-F. Time resolution is 2.5 min. Movie S13 Movie S13 Representative Z-projected live imaging of c306-Gal4 driving UAS-Ecad-RNAi in clusters co-expressing Lifeact-GFP under the control of the slbo enhancer and Sqh-mCherry from its endogenous promoter during a rounded phase of migration. From Figure 6G-H. Time resolution is 2.5 min. Movie S14 Movie S14 Sqh-mCherry (magenta) channel from Supplementary Movie 13. From Figure 6G-H. Time resolution is 2.5 min. Movie S15 Movie S15 Example segmentation analysis from a representative Z-projected time lapse of a cluster expressing c306-Gal4 driving UAS-white-RNAi in clusters co-expressing Lifeact-GFP under the control of the slbo enhancer and Sqh-mCherry from its endogenous promoter during migration. Time lapse analyzed in Imaris by 1. segmentation of the cluster using Lifeact-GFP, 2. Rendering of Sqh-mCherry by masking the inside of the Life-act surface, 3. performing a distance transformation using the masked Sqh-mCherry that is color coded for distance from membrane (dark colors are short distances and bright/white colors are more distant), 4. combining the distance transformation with the Sqh-mCherry mask to only include the cortical 2 μm of the original Sqh-mCherry signal for quantification in Figure 6I. Movie S16 Movie S16 Representative Z-projected time lapse of Lifeact-GFP and Sqh-mCherry expressing clusters used for quantification of Figure 7B-C during protrusion/retractions cycles. Time resolution is 2 min. Movie S17 Movie S17 Sqh-mCherry channel from Supplementary movie 16. Time resolution is 2 min. Movie S18 Movie S18 Representative Z-projections of Lifeact-GFP (green) in c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-Sqh-E20E21 migrating border cells clusters that split. Time resolution is 2 min. Movie S19 Movie S19 Representative Z-projections of Lifeact-GFP (green) in c306-Gal4; tub-GAL80ts driving UAS-LifeactGFP and UAS-Sqh-E20E21 migrating border cells clusters during protrusive phase. Time resolution is 2 min. Movie S20 Movie S20 Representative Z-projection of Lifeact-GFP (green) in c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-Sqh-E20E21 border cells cluster at the oocyte border during a blebbing phase. Time resolution is 2 min. Movie S21 Movie S21 Representative Z-projection of control cluster expressing slbo-Gal4; UAS-PLCδ1-PH-GFP. Time resolution is 2 min. Movie S22 Movie S22 Representative Z-projection of cluster expressing slbo-Gal4; UAS-PLCδ1-PH-GFP, UAS-Rho1V14. Blebs are marked by white arrows. Time resolution is 2 min.
115.

Optogenetic gene editing in regional skin.

blue CRY2/CIB1 mouse epidermal keratinocytes mouse in vivo
Cell Res, 31 Jul 2019 DOI: 10.1038/s41422-019-0209-9 Link to full text
Abstract: Abstract not available.
116.

Versatile cell ablation tools and their applications to study loss of cell functions.

blue LOV domains Review
Cell Mol Life Sci, 29 Jul 2019 DOI: 10.1007/s00018-019-03243-w Link to full text
Abstract: Targeted cell ablation is a powerful approach for studying the role of specific cell populations in a variety of organotypic functions, including cell differentiation, and organ generation and regeneration. Emerging tools for permanently or conditionally ablating targeted cell populations and transiently inhibiting neuronal activities exhibit a diversity of application and utility. Each tool has distinct features, and none can be universally applied to study different cell types in various tissue compartments. Although these tools have been developed for over 30 years, they require additional improvement. Currently, there is no consensus on how to select the tools to answer the specific scientific questions of interest. Selecting the appropriate cell ablation technique to study the function of a targeted cell population is less straightforward than selecting the method to study a gene's functions. In this review, we discuss the features of the various tools for targeted cell ablation and provide recommendations for optimal application of specific approaches.
117.

Compartmentalized cAMP Generation by Engineered Photoactivated Adenylyl Cyclases.

blue bPAC (BlaC) HEK293T MVD7 Signaling cascade control Immediate control of second messengers
Cell Chem Biol, 23 Jul 2019 DOI: 10.1016/j.chembiol.2019.07.004 Link to full text
Abstract: Because small-molecule activators of adenylyl cyclases (AC) affect ACs cell-wide, it is challenging to explore the signaling consequences of AC activity emanating from specific intracellular compartments. We explored this issue using a series of engineered, optogenetic, spatially restricted, photoactivable adenylyl cyclases (PACs) positioned at the plasma membrane (PM), the outer mitochondrial membrane (OMM), and the nucleus (Nu). The biochemical consequences of brief photostimulation of PAC is primarily limited to the intracellular site occupied by the PAC. By contrast, sustained photostimulation results in distal cAMP signaling. Prolonged cAMP generation at the OMM profoundly stimulates nuclear protein kinase (PKA) activity. We have found that phosphodiesterases 3 (OMM and PM) and 4 (PM) modulate proximal (local) cAMP-triggered activity, whereas phosphodiesterase 4 regulates distal cAMP activity as well as the migration of PKA's catalytic subunit into the nucleus.
118.

Cross-linker-mediated regulation of actin network organization controls tissue morphogenesis.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape
J Cell Biol, 28 Jun 2019 DOI: 10.1083/jcb.201811127 Link to full text
Abstract: Contraction of cortical actomyosin networks driven by myosin activation controls cell shape changes and tissue morphogenesis during animal development. In vitro studies suggest that contractility also depends on the geometrical organization of actin filaments. Here we analyze the function of actomyosin network topology in vivo using optogenetic stimulation of myosin-II in Drosophila embryos. We show that early during cellularization, hexagonally arrayed actomyosin fibers are resilient to myosin-II activation. Actomyosin fibers then acquire a ring-like conformation and become contractile and sensitive to myosin-II. This transition is controlled by Bottleneck, a Drosophila unique protein expressed for only a short time during early cellularization, which we show regulates actin bundling. In addition, it requires two opposing actin cross-linkers, Filamin and Fimbrin. Filamin acts synergistically with Bottleneck to facilitate hexagonal patterning, while Fimbrin controls remodeling of the hexagonal network into contractile rings. Thus, actin cross-linking regulates the spatio-temporal organization of actomyosin contraction in vivo, which is critical for tissue morphogenesis.
119.

Self-Organized Nuclear Positioning Synchronizes the Cell Cycle in Drosophila Embryos.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Cell, 9 Apr 2019 DOI: 10.1016/j.cell.2019.03.007 Link to full text
Abstract: The synchronous cleavage divisions of early embryogenesis require coordination of the cell-cycle oscillator, the dynamics of the cytoskeleton, and the cytoplasm. Yet, it remains unclear how spatially restricted biochemical signals are integrated with physical properties of the embryo to generate collective dynamics. Here, we show that synchronization of the cell cycle in Drosophila embryos requires accurate nuclear positioning, which is regulated by the cell-cycle oscillator through cortical contractility and cytoplasmic flows. We demonstrate that biochemical oscillations are initiated by local Cdk1 inactivation and spread through the activity of phosphatase PP1 to generate cortical myosin II gradients. These gradients cause cortical and cytoplasmic flows that control proper nuclear positioning. Perturbations of PP1 activity and optogenetic manipulations of cortical actomyosin disrupt nuclear spreading, resulting in loss of cell-cycle synchrony. We conclude that mitotic synchrony is established by a self-organized mechanism that integrates the cell-cycle oscillator and embryo mechanics.
120.

Use of Exogenous and Endogenous Photomediators as Efficient ROS Modulation Tools: Results and Perspectives for Therapeutic Purposes.

blue LOV domains Review
Oxid Med Cell Longev, 31 Mar 2019 DOI: 10.1155/2019/2867516 Link to full text
Abstract: Reactive Oxygen Species (ROS) play an essential dual role in living systems. Healthy levels of ROS modulate several signaling pathways, but at the same time, when they exceed normal physiological amounts, they work in the opposite direction, playing pivotal functions in the pathophysiology of multiple severe medical conditions (i.e., cancer, diabetes, neurodegenerative and cardiovascular diseases, and aging). Therefore, the research for methods to detect their levels via light-sensitive fluorescent probes has been extensively studied over the years. However, this is not the only link between light and ROS. In fact, the modulation of ROS mediated by light has been exploited already for a long time. In this review, we report the state of the art, as well as recent developments, in the field of photostimulation of oxidative stress, from photobiomodulation (PBM) mediated by naturally expressed light-sensitive proteins to the most recent optogenetic approaches, and finally, we describe the main methods of exogenous stimulation, in particular highlighting the new insights based on optically driven ROS modulation mediated by polymeric materials.
121.

Cortical mitochondria regulate insulin secretion by local Ca2+ buffering.

blue CRY2/CIB1 INS-1E MIN6 Control of cytoskeleton / cell motility / cell shape Organelle manipulation
J Cell Sci, 29 Mar 2019 DOI: 10.1242/jcs.228544 Link to full text
Abstract: Mitochondria play an essential role in regulating insulin secretion from beta cells by providing ATP needed for the membrane depolarization that results in voltage-dependent Ca2+ influx and subsequent insulin granule exocytosis. Ca2+, in turn, is also rapidly taken up by the mitochondria and exerts important feedback regulation of metabolism. The aim of this study was to determine if the distribution of mitochondria within beta cells is important for the secretory capacity of these cells. We find that cortically localized mitochondria are abundant in beta cells, and that these mitochondria redistribute towards the cell interior following depolarization. The redistribution requires Ca2+-induced remodeling of the cortical F-actin network. Using light-regulated motor proteins, we increased the cortical density of mitochondria 2-fold and found that this blunted the voltage-dependent increase in cytosolic Ca2+ concentration and suppressed insulin secretion. The activity-dependent changes in mitochondria distribution are likely important for the generation of Ca2+ microdomains required for efficient insulin granule release.
122.

Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo.

blue iLID D. melanogaster in vivo Signaling cascade control Developmental processes
Dev Cell, 11 Feb 2019 DOI: 10.1016/j.devcel.2019.01.009 Link to full text
Abstract: The Erk mitogen-activated protein kinase plays diverse roles in animal development. Its widespread reuse raises a conundrum: when a single kinase like Erk is activated, how does a developing cell know which fate to adopt? We combine optogenetic control with genetic perturbations to dissect Erk-dependent fates in the early Drosophila embryo. We find that Erk activity is sufficient to "posteriorize" 88% of the embryo, inducing gut endoderm-like gene expression and morphogenetic movements in all cells within this region. Gut endoderm fate adoption requires at least 1 h of signaling, whereas a 30-min Erk pulse specifies a distinct ectodermal cell type, intermediate neuroblasts. We find that the endoderm-ectoderm cell fate switch is controlled by the cumulative load of Erk activity, not the duration of a single pulse. The fly embryo thus harbors a classic example of dynamic control, where the temporal profile of Erk signaling selects between distinct physiological outcomes.
123.

Developmental Erk Signaling Illuminated.

blue LOV domains Review
Dev Cell, 11 Feb 2019 DOI: 10.1016/j.devcel.2019.01.022 Link to full text
Abstract: How a small number of signaling pathways can be re-used in distinct embryonic contexts to control different fates remains unclear. In this issue of Developmental Cell, Johnson and Toettcher (2019) use optogenetic approaches to explore how different dynamic ERK signaling states control specific developmental fates in the Drosophila embryo.
124.

Continued Activity of the Pioneer Factor Zelda Is Required to Drive Zygotic Genome Activation.

blue CRY2/CRY2 D. melanogaster in vivo Endogenous gene expression
Mol Cell, 9 Feb 2019 DOI: 10.1016/j.molcel.2019.01.014 Link to full text
Abstract: Reprogramming cell fate during the first stages of embryogenesis requires that transcriptional activators gain access to the genome and remodel the zygotic transcriptome. Nonetheless, it is not clear whether the continued activity of these pioneering factors is required throughout zygotic genome activation or whether they are only required early to establish cis-regulatory regions. To address this question, we developed an optogenetic strategy to rapidly and reversibly inactivate the master regulator of genome activation in Drosophila, Zelda. Using this strategy, we demonstrate that continued Zelda activity is required throughout genome activation. We show that Zelda binds DNA in the context of nucleosomes and suggest that this allows Zelda to occupy the genome despite the rapid division cycles in the early embryo. These data identify a powerful strategy to inactivate transcription factor function during development and suggest that reprogramming in the embryo may require specific, continuous pioneering functions to activate the genome.
125.

Optogenetic Delineation of Receptor Tyrosine Kinase Subcircuits in PC12 Cell Differentiation.

blue VfAU1-LOV PC-12 Signaling cascade control Cell differentiation
Cell Chem Biol, 27 Dec 2018 DOI: 10.1016/j.chembiol.2018.11.004 Link to full text
Abstract: Nerve growth factor elicits signaling outcomes by interacting with both its high-affinity receptor, TrkA, and its low-affinity receptor, p75NTR. Although these two receptors can regulate distinct cellular outcomes, they both activate the extracellular-signal-regulated kinase pathway upon nerve growth factor stimulation. To delineate TrkA subcircuits in PC12 cell differentiation, we developed an optogenetic system whereby light was used to specifically activate TrkA signaling in the absence of nerve growth factor. By using tyrosine mutants of the optogenetic TrkA in combination with pathway-specific pharmacological inhibition, we find that Y490 and Y785 each contributes to PC12 cell differentiation through the extracellular-signal-regulated kinase pathway in an additive manner. Optogenetic activation of TrkA eliminates the confounding effect of p75NTR and other potential off-target effects of the ligand. This approach can be generalized for the mechanistic study of other receptor-mediated signaling pathways.
Submit a new publication to our database